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ICRP Supported by Report BEIR VII
prefers recommendations to be based

on the linear, no-threshold (LNT) dose-response 

R = cancer probability in exposed tissue
D = absorbed dose

R

D

R = α • D
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Radiation-Induced Cancer
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Wilson  CTR, J. Phys., 1913

attenuating
metal plate

x-ray beam
from below

e- Atom

Photon

Ionizing Radiation→Energy Deposition Events
Wilson cloud chamber, compton electrons



Electron Track in Water at 10-15 sec

Ionizations
Excitations



Electron Track in Water at 10-8 sec

Reactive Oxyen Species 
ROS



Individual Particle Tracks in Water



Agenda

Dose 1. Dose and energy deposition events

2. Choice of primary target
2.
Effects 3. Damaging effects

4. Adaptive Protection

5. Projected net effect on cancer

Analysis 6. A Model 



Atoms

Molecules

Cells

Tissues

Organism

Complex Adaptive Systems 
at Various Levels

Living Organism

Cells are Fundamental
Units of Life

Building Blocks 
of Life

From Matter to Life



Cells React as Entities
average cell mass in mammals is 1 ng

10 μm

1 Cell
~ 1011

Molecules



X-Ray Induced Electron Tracks in Tissue

Tissue

Cells
⎯x 1 ng

Matrix

e- Tracks

Dose is proportional to number of tracks / exposed mass 



From Absorbed Dose (D) to Total Energy (E)
absorbed in exposed micromasses

M  = Mass of exposed tissue
NE = No of exposed micromasse
NH = No of track hits in micromas
z1 = Energy absorbed per hit 

in micromass (Specific Ene

Tissue

E / M  =⎯D = [⎯z1 • NH ] / NE

Dose expresses multiple hits of⎯z1 per NE

Particle Track

Micromasses
1 ng each

Bond et al., 1988



Some⎯zF1 Values (mGy) Commonly Used
mean energy absorbed per particle track 

in micromass of 1 ng  (Microdose)

60Co γ-rays                   ~ 0.3
137Cs γ-rays                 ~ 0.4
250 kVp x-rays            ~ 0.9
100 kVp x-rays            ~ 1.0   
10 MeV protons           ~ 6.0
4 MeV α-particles     ~ 350.0

Modified from: ICRU Report 36, 1983, 1993 



Signaling between Tissue Cells and Matrix

Tissue

Cells
Matrix

Gap
Junction

Hit Cell

= Bystander Effects



Schettino G. et al., Radiat. Res. 163: 332 - 336, 2005

Bystander Killing Effect from Single Cell
CK x-irrad. of 1 cell in dish with ~160 cells
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Animal Cell Hit by Electron

Mitochondrium
generates
energy
(has own DNA)

Cytoplasm

Nucleus = site of
genetic material
(DNA)

Cytoplasm

Average cell mass = 1 ng               N = Nucleus   (⎯x  8 μm ∅ )

e-



base loss
base change
(~10/0.01 Gy)

single strand breaks
SSB    (~ 10/0.01 Gy)

double strand breaks
DSB    (~ 0.4/0.01 Gy)

cross links
(~ 1-2/0.01 Gy)

Radiation Effects on DNA

Repair of DNA damage begins
immediately and may last          
from minutes to hours to days. 

indirect effects
from ROS (~ 80 %)

direct effects
(~ 20 %)
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Electron track

2 nm

300 eV
electron

n = ionized molecule
h = excited molecule

OH
H

Clustered DNA Damage

DTG 21.8.03Goodhead D, pers. comm., 21. 08. 2003

~ 25 - 40 % of DSBs from x-rays 
have complex structure



γ-H2AX foci distribution

35 DSBs cell-1 Gy-1

Radiation-Induced DNA-DSB
in γ-irradiated MRC-5 cells in culture

Rothkamm K, Löbrich M,  PNAS, 2003                    
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spont. DSB ≅⎯x 0.04 – 0.06 / cell
at steady state

24 hrs post irrad.

3 min post irrad.

3 min post irrad.



Hall E., Radiobiology for the Radiologist, Lippincott et al., 2000 

Radiation-Induced Chromosome Aberrations 
in human leukocytes

ring chromosome                   dicentric, fragment chromosome



Radiation-Induced Genomic Instability

DNA damage may cause genomic instability 
in the progeny of the affected cells, likely in 
a dose dependent manner.

Genomic instability in vivo tends to

1. enhance malignant cell transformation,

2. tag damaged cells for removal 
by immune response or apoptosis.



Atoms

Molecules

Cells

Tissues

Organism
~ 10-14 Malignant transformation 

with death of individual 

~  10-4 Chromosomal aberr.

~  10-2 DNA - DSB 

~    2 ∑ DNA alterations 

~ 150 ROS

Risk per Human Stem Cell
per 1 mGy from 100 kV x-rays
projected for blood forming tissue
by extrapolation from high to low D

Ionizing
Radiation

?

Complex Adaptive Systems 
at Various Levels

Feinendegen et al., Stem Cells 13 Suppl 1: 7-20 (1995) 
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Biological Systems are Complex and Adapting

Cellular Molecules
Respond

Organism

Tissues

Intercellular
+ Matrix Signaling

Intracellular
Signaling

Neuro-Hormonal
Signaling

Degree of PerturbationStress

they respond to perturbations 
of homeostasis, depending on

Adaptive Protection Damage

Cells

species, cell type and
metabolism
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Kojima S et al., Radiat. Res., 2002

Total Glutathione (G-SH + GSSG)) Natural Killer (NK) Cells

Low-Dose Induced ↑ of G-SH - ROS Detoxification
mouse spleen cells assayed in vitro

at various times after 0.5 Gy WB γ-irradiation
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Low-Dose Induced Protection ↓ with Dose
γ-radiation-induced TdR-K-inhibition, mouse BM cells 
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0.01 Gy
0.1   Gy
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given 4 hrs.
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Feinendegen LE et al., 1995
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Le X et al., Science, 1996

without prior 0.25 Gy conditioning dose
4 hours after 0.25 Gy conditioning

Low-Dose Induced ↑ of DNA Repair
human lung cancer cells (A-549) in culture

removal of thymine glycol after 2 Gy γ -radiation
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Low-Dose Induced ↓ of DNA Damage

Broome EJ, Brown DL, Mitchel REJ, Radiat. Res., 2002 
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human fibroblasts micronucleus assay after 60Co γ-irradiation
Conditioning doses: 1 – 500 mGy. Challenging dose 3 hrs later: 4 Gy  
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Low-dose induced adaptive protection
as measured by micronucleus frequency
is highly significant - compared to cell
response to 4 Gy without adapting dose.

- p <0.05
- Mean results are given ± std. dev. - n = 3

No damage
seen

< 100 mGy

~25% protection
by < 100 mGy

seen 
at 4 Gy 



Low Dose Rate Induced DNA Repair
human diploid cells (SuSa/T-n) in culture

LDR
0.3 mGy / min

~ 1 e- hit / ng / 1.3 min

HDR 
1.8 Gy / min

137Cs γ-source

γH
2A

X 
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Dose (Gy)
Ishizaki K et al.
J. Radiat. Res.

45: 521-525, 2005
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Fujita et al., in Apoptosis, Business Ctr. Acad. Soc. Japan, 1998 

Cortex

Medulla

Radiation-Induced ↑ of Apoptosis
0.5 Gy WB γ-irradiation mice, thymus, in vivo



Acute Exposure

Fract. Exposure
0.05 Gy / d  
5 d / week
2 weeks

Fujita et al., in Apoptosis, Business Ctr. Acad. Soc. Japan, 1998 
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Radiation-Induced ↑ of Apoptosis
0.5 Gy WB γ-irradiation mice, thymus, in vivo



Apoptosis Incidence ↑ with Dose

Mouse 
Thymus

(WB γ-irrad.)

Detection methods: 

• TUNEL (TdT)

ISEL 

HE Stain

X Flow Cytometry

Ohyama H, Yamada T, in Apoptosis, Business Ctr. Acad. Soc. Japan, 1998 

at 4 hrs after acute exposure
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Anderson et al., 1986; UNSCEAR, 1994

Effect of 0.15 Gy upon response of A/J mice to subimmunogenic and immunogenic numbers of non-active 
mitomycin-treated fibrosarcoma (SaI) tumor cells. Groups of 60 mice were exposed to whole-body irradiation
or sham-irradiated and inoculated subcutaneously with the indicated numbers of mitomycin-treated tumor cells. 
Twenty-one days later; all animals received 104 untreated SaI cells and were followed for tumor size. 
A control group did not receive mitomycin-treated cells. 
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Low-Dose Induced ↑ of Immune Response Mice 

A/J mice received s.c. either 102 or 105 non-viable fibrosarcoma (Sal) cells with  
or without WB  γ-irradiation with 0.15 Gy  → 3 wks: 104 viable Sal cells transpl. 

→ for 26 days: tumor sizes measured  - (n = 60 mice / group) 



Low-Dose Induced ↓ of Lung Metastases Mice

�  0.1 Gy                ■ 0.2 Gy
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Control = 100 %

BALB/c mice received WB x-irradiation with 0.1 or 0.2 Gy 
→ 2 hrs.: sarcoma cell transpl. → at 2 wks: lung nodes count  - (n = 12 mice / group)

L 1 sarcoma cells are nonimmunogenic for BALB/c mice
Cheda A et al., Radiat. Res. 161: 335-340 (2004)



Low-Dose Induced ↑ of Immune Response Rats
hepatoma impl.→ 2 weeks: 0.2 γ-irrad.→ 4 weeks: counts  
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Hashimoto S et al., Radiat. Res., 1999 
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Adapted from Sakamoto et al., Jpn. Soc. Ther. Radiol. Oncol., 1997

Low-Dose Induced ↓ of Lung Metastases Mice
tumor cell transplantation into axilla →

12 days: WB γ-irradiation → 20 days: lung nodes count
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Gene Expression in cDNA Microarray Analysis
in low and high dosed normal human skin fibroblasts

~ 2 hours after γ-irradiation

0.02 Gy

1.0 Gy

Golder-Novoselsky E et al., DOE Workshop, 2002
Yin E et al., Int. J. Radiat. Biol. , 2003  
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Low-Dose (Low-LET) Induced Adaptive Protection
scheme of dose-response functions

Adaptive protection changes 
gene expression and causes
•  DNA Damage Prevention
•  DNA Damage Repair
•  Immune Response 
•  Damage Removal (Apoptosis)

max. Σ protect.
≈ 0.6 - 1



Detoxification (ROS Scavenging); Apoptosis
DNA Repair; Cell Proliferation

Immune Response
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Hours                Days                              Weeks                     Months0

0

Acute Repair

Low-Dose (Low-LET) Induced Adaptive Protection
scheme of durations of protection (tp)
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Cancer develops 

on the basis of DNA damage.

Most of this damage comes from

endogenous sources, 

largely through 

oxygen metabolism.



R•

Signals

~ 109 ROS (R•)
per cell per day →

~ 106 DNA alterations, 
with  ~ 0.1 DSB

Pollycove M, Feinendegen LE, 2003

Normal Cell

Lipid peroxidation
Protein-carbonylation
Cytoskeletal disruption
Perturbs Ca2+ homeostasis
Interfers with cell signaling
Activates apoptosis

Orrenius S et al., 2000

Reactive Oxygen Species (ROS) by Metabolism



Occurrence of γ-H2AX Foci (DSB) ↑ with Age

Black bars:  Non-irradiated cells Shaded bars:   30 min after 0.6 Gy γ-irradiation
White bars:  24 hrs after irradiation            Hatched bars:  Fraction of SA-β-gal-pos. cells

(indicator of senescence)
Sedelnikova OA et al., Nature Cell Biol., 2004



Ratio of DNA Alterations per Cell per Day

E = alterations from endogenous  sources  
(mainly reactive oxygen species, ROS) 

R = total alterations from background radiation 
(~1 mGy/year x-rays): 

E/R:  Total alterations ~ 107

E/R:  Total DSB > 103

More than 97 % of human cancers are non-radiogenic
Pollycove M, Feinendegen LE, 2003;        Vilenchik MM, Knudson AG, 2003   
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Low-Dose Induced ↓ of Spontaneous Transformation
C3H10 T ½ cells after 60Co γ-irrad. with 0.1, 1.0, 10 cGy, vs. control

Cells Seeded After IrradiationUnirradiated
Control
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Directly After 1 Day Holding

Azzam EI et al., Radiat. Res. 1996



n = 159 - 191

Time (Days)
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Low D

Low-Dose Induced ↓ of Spont. Tumor
lymphoma in Trp 53 +/- mice after single WB γ-irrad. at age ~ 2 months 

Mitchel REJ et al., Radiat. Res., 2003

0 Gy         10 mGy   100 mGy 

Trp53+/+



SMR for British Radiologists (100 Years Study)
compared with medical practitioners

By Courtesy:  Kaneko M, 2004; adapted from British J. Radiology, 2001 



Atkinson WD et al. published in 2004 the 
mortality among 51 367 employees of the UK 

Atomic Energy Authority, from 1946-1997.

The all cancer mortality 
was significantly lower for radiation workers 

than for non-radiation workers.

Atkinson WD et al., Occup. Environ. Med. 61: 577-585, 2004



Zablotska LB et al. in 2004 published the 
mortality among 45,468 Canadian

nuclear power industry workers after chronic 
low-dose exposure to ionizing radiation:  

For all solid cancers combined, the categorial 
analysis shows a significant reduction in risk 
in the 1- 49 mSv category compared to the 

lowest category (<1 mSv) with a relative risk 
of 0.699 (95% CI: 0.548, 0.892).

Above 100 mSv, risk appeared to increase. 
Zablotska LB et al.,  Radiat. Res. 161: 633-641, 2004



DNA Damage
in human lymphoc.
of 41 exp.workers

in vivo

Above cells show
enhanced DNA repair
upon Co60 irrad. in vitro

with 4 mGy / min
(1 hit / ng q ~ 4.6 sec) 

accum. D = 3.5 Gy
Thierens H et al. , Int. J. Rad. Biol. 78: 1117 - 1126, 2002

boderline significant

highly significant
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Tissue Response to Low-Dose Radiation
of a given quality (defined⎯z1) is determined 

by all cell reponse probabilities, px, per⎯z1

Tissue

NH: No of hits in micromasses NE
(intra- and extracellular)

Cell

R: incidence of late effects
(cancer) 

pprot /⎯z1 : protect. ↓ with NH;tp
papo /⎯z1 : apoptosis, constant

pind /⎯z1 :  induction, constant

pspo : spont. (+) oncogenesis/cell



Tissue Response to Low-Dose Radiation
of a given quality (with defined ⎯z1)

is the sum of all cell response probabilities. 

From  R = α • D
to  R  =  [α •⎯z1] •  [NH / NE]

and with p-values / ⎯z1, for damage and protection
as defined, [α •⎯z1] expresses Σ of p-values:

R =  { pind – [pprot(fNH;tp) + papo] pspo } [NH/NE]
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Dual Effect of Low-Dose Radiation
protection against damage ………. induction of damage

?

pind [NH/NE]pprot(fNH;tp)pspo [NH/NE]

papopspo [NH/NE]



R
 =

 N
et

 R
is

k 
of

 C
an

ce
r

Bkgd

Dual Effect of Low-Dose of Ionizing Radiation
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DNA  Damage

Net DNA 
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Cancer Risk

Protection against
DNA Damage

Spont. DNA Damage

R =  { pind – [pprot(fNH;tp) + papo] pspo } [NH/NE]

Dose (Gy) ; ⎯z1 • [NH / NE] 



Alternative Dose-Risk Functions  

Radiation-Induced Cancer
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Options of Low-Dose Induced Cancer Risk



DNA

Low-dose induced
rise in DNA damage 
is linear with dose

Damage propagation
and its low-dose 
induced reduction

are not linear with dose

Conclusion 1
Biological systems exposed to ionizing radiation 

Organism

Cells



Conclusion 2

An apparently simple truth

A + B ≠ A

with B ≠ 0

Linear (f)  + Non-linear (f) ≠ Linear (f)



Conclusion 3
The linear-no-threshold (LNT) hypothesis does 

not comply with newest experimental data.  

The linear-dose-risk function is artificial and

needs replacement by a function that 

includes both linear and non-linear terms.

Basic research data and epidemiological    

data conform with threshold or hormesis

in the low-dose range.
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Dose-Rate and Microdose-Hits

t x
 [d

ay
s]

N
H

 [1/(100 ng •day)]

Dose-Rate [mGy/year]

Microdoses ⎯z1 in mGy:   60Co-gamma radiaton    0.3  ~   45 ROS
137Cs-gamma radiation   0.4  ~   60 ROS

250 kV x-rays              0.9  ~ 130 ROS
Feinendegen LE, Graessle DH  2002

tx = 5 - 16 days

NH/100 ng • d = 7 - 22

30



Low-Dose Rate Induced ↓ of Locus Mutations
In vivo low-LET irradiation,  mouse spermatogonia
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log dose rate, cGy/min

Vilenchik MM, Knudson AG, PNAS, 2000

0.1 – 1 cGy/min ≅ 1 hit / cell q 3 – 30 sec
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